Data processing with DIALS - ○ ○

James Parkhurst
Institut Pasteur de Montevideo/CCP4 workshop, Uruguay,
November 2017

What are we doing and why are we doing it?

 Compute the intensity of each Bragg spot in a set of diffraction images
$\left|F_{h k l}\right|=\sqrt{\frac{K I_{h k l}}{L p}}$
$\mathrm{K}=$ constant for given crystal
$\mathrm{L}=$ Lorentz factor
$\mathrm{p}=$ polarization factor
\qquad

$$
\rho(x, y, z)=\frac{1}{V} \sum_{h} \sum_{k} \sum_{l} F_{h k l} e^{-2 \pi i(h x+k y+l z)}
$$

Electron density at every point in the cell depends on the intensity of every reflection. We need to measure our intensities as well as possible!

Warning: garbage in, garbage out

Data collection is the last experimental stage; if you collect bad data you are stuck with it! Data processing programs won't be able to rescue you!

DIALS overview

Acknowledgements

Fig. 10.1. Simplified flow-diagram of the Cambridge system, showing the inter-relation of the component programs, IDXREF, GENERT, MOSCO and CELL.

Philosophy: toolbox

Philosophy: levels of interaction

xia2 -dials \$\{data_directory\}

For AUTOMATIC/DEFAULT/NATIVE			
High resolution limit	1.36	6.08	1.36
Low resolution limit	53.92	53.92	1.40
Completeness	99.8	99.9	97.8
Multiplicity	5.3	4.9	3.1
I/sigma	11.7	26.8	2.2
Rmerge	0.061	0.026	0.370
Rmeas(I)	0.075	0.032	0.521
Rmeas(I+/-)	0.075	0.032	0.495
Rpim(I)	0.032	0.014	0.279
Rpim(I+/-)	0.042	0.018	0.326
CC half	0.999	0.998	0.818
Wilson B factor	8.913		
Anomalous completeness	97.5	100.0	77.3
Anomalous multiplicity	2.6	3.1	1.8
Anomalous correlation	0.005	0.204	-0.019
Anomalous slope	0.955	0.000	0.000
Total observations	292123	3747	12262
Total unique	55480	768	3919
Assuming spacegroup: P 41 21 2			
Other likely alternatives are:			
P 43 21 2			
Unit cell:			
57.781 57.781 149.995			
90.000 90.000 90.000			

DIALS/XIA2 in CCP4 I2

Future: DIALS GUI (currently in development)

Main DIALS programs

```
dials.import
dials.find_spots
dials.index
dials.refine_bravais_settings
dials.refine
dials.integrate
dials.export_mtz
More than 50 other dials.* commands
```

Then onwards into the CCP4 data processing pipeline: POINTLESS \rightarrow AIMLESS \rightarrow CTRUNCATE...

DIALS on the command line

```
$ dials.import ${data_directory}/th_8_2_0*.cbf
$ dials.find_spots datablock.json nproc=8
$ dials.index datablock.json strong.pickle
$ dials.refine_bravais_settings experiments.json indexed.pickle
$ dials.reindex indexed.pickle change_of_basis_op=a,b,c
$ dials.refine bravais_setting_9.json reindexed_reflections.pickle outlier.algorithm=tukey use_all_reflections=true scan_varying=true output.experiments=refined_experiments.json
\$ dials.integrate refined_experiments.json refined.pickle outlier.algorithm=null nproc=4
\$ dials.export_mtz integrated.pickle refined_experiments.json hklout=integrated.mtz
\$ pointless hklin integrated.mtz hklout sorted.mtz > pointless.log
\$ aimless hklin sorted.mtz hklout scaled.mtz > aimless.log << eof resolution 1.3
anomalous off
eof
\$ ctruncate -hklin scaled.mtz -hklout truncated.mtz -colin '/*/*/[IMEAN,SIGIMEAN]' > ctruncate.log
```

Who needs e 딘

Spot finding

dials.find_spots

- Sequence of per-image filters to find strong pixels
-3D analysis of strong pixels to identify strong spots
- Filter spots by
- number of pixels
- peak-centroid distance
- resolution
- ice rings
- untrusted regions
\$ dials.find_spots datablock.json nproc=8

Histogram of per-image spot count for imageset 0: 71268 spots found on 200 images (max 1897 / bin) *
**** *

$* *$
$* *$
 $* *$
$* ~$ **
1
image
Saved 71268 reflections to strong.pickle Time Taken: 88.113627
raw data
mean
variance

dispersion = variance / mean

dispersiòn > $1+$ sigma_s * sqrt(2/(m-1))

raw data > mean + sigma_b * sqrt(variance)

Default spot finding parameters are often not suitable for CCD images

Image is from Rigaku Saturn 92 detector

Default spot finding parameters are often not suitable for CCD images

Indexing

dials.index

Map centroids to reciprocal space, analyse for periodicity and determine basis vectors for the reduced cell

- Choice of method:
- 1D FFT (DPS)
- 3D FFT - default
- new real space grid search algorithm
- Optionally provide known unit cell and space group
\$ dials.index datablock.json strong. pickle Found max_cell: 199.1 Angstrom Setting d_min: 3.89
RMSDS by experiment:

Exp	Nref	$\begin{aligned} & \text { RMSD_X } \\ & (\mathrm{px})^{-} \end{aligned}$	$\begin{aligned} & \text { RMSD_Y } \\ & (\mathrm{px})^{-} \end{aligned}$	$\begin{aligned} & \text { RMSD Z } \\ & \text { (images) } \end{aligned}$
0	4049	0.2881	0.25838	0.17767

Final refined crystal models:
model 1 (114690 reflections):
Crystal
Unit cell: (57.804, 57.782, 150.027, 90.009, 89.991, 89.990) Space group: p 1 U matrix: $\{\{0.3455,-0.2589,-0.002$

B matrix:
$A=U B:$
\{\} $\{-0.000$ -0.0000
0.0060 $\left\{\begin{array}{l}0.0154 \\ 0.0051\end{array}\right.$ $\left\{\begin{array}{lr}0.0060, & -0.0045, \\ 0.0154, & 0.0068, \\ 0.0051, & -0.0153,\end{array}\right.$
$\left.\begin{array}{r}-0.0060 \\ 0.0015\end{array}\right\}$ $0.0015\}$
$0.0024\}$

Saving refined experiments to experiments.json Saving refined reflections to indexed. pickle

dials.index

DIALS contains an indexing algorithm that is very successful at identifying multiple lattices

This even works when lattices diffract equally well, and only a narrow wedge of data is available

As additional lattices are found, joint refinement reduces correlations between crystal and detector parameters
R. Gildea et al. (2014) Acta Cryst. D70, 2652-66

1° wedge of data 1858 spots

dials.reciprocal_lattice_viewer

```
$ dials.reciprocal_lattice_viewer
Usage: dials.reciprocal_lattice_viewer [options] datablock.json reflections.pickle
Options:
    -h, --help show this help message and exit
    -c, --show-config Show the configuration parameters.
    -a ATTRIBUTES_LEVEL, --attributes-level=ATTRIBUTES_LEVEL
        Set the attributes level for showing configuration
        parameters
    -e EXPERT_LEVEL, --expert-level=EXPERT_LEVEL
        Set the expert level for showing configuration
        parameters
    -v Increase verbosity
Visualise the strong spots from spotfinding in reciprocal space.
Examples:
dials.reciprocal_lattice_viewer datablock.json strong.pickle
dials.reciprocal_lattice_viewer experiments.json indexed.pickle
```

$$
*_{4}
$$

戠
$\stackrel{*}{*}$ $\$$

dials.refine_bravais_settings

- After indexing, look for lattice symmetry
- All compatible Bravais lattices are tested
- Metric fit score, refined RMSD and symmetry element CCs are reported
- The user chooses which solution to take further
\$ dials.refine_bravais_settings experiments.json indexed.pickle

Solution Metric fit rmsd min/max cc \#spots lattice	unit cell volume

| $*$ | 9 | 0.0311 | 0.063 | $0.800 / 0.857$ | 8099 | tP | 57.78 | 57.78 | 150.00 | 90.00 | 90.00 | 90.00 | 500867 | a, b, c |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $*$ | 8 | 0.0311 | 0.063 | $0.800 / 0.969$ | 8099 | oC | 81.72 | 81.73 | 150.01 | 90.00 | 90.00 | 90.00 | 1002008 | $a-b, a+b, c$ |
| $*$ | 7 | 0.0272 | 0.061 | $0.969 / 0.969$ | 8099 | $m C$ | 81.73 | 81.74 | 150.03 | 90.00 | 89.99 | 90.00 | 1002365 | $a-b, a+b, c$ |
| $*$ | 6 | 0.0311 | 0.062 | $0.805 / 0.805$ | 8099 | $m C$ | 81.73 | 81.72 | 150.02 | 90.00 | 89.99 | 90.00 | 1002012 | $a+b,-a+b, c$ |
| $*$ | 5 | 0.0154 | 0.061 | $0.800 / 0.906$ | 8099 | $o P$ | 57.79 | 57.76 | 149.99 | 90.00 | 90.00 | 90.00 | 500672 | a, b, c |
| $*$ | 4 | 0.0147 | 0.060 | $0.821 / 0.821$ | 8099 | $m P$ | 57.77 | 57.80 | 150.01 | 90.00 | 90.02 | 90.00 | 500853 | $-b,-a,-c$ |
| $*$ | 3 | 0.0154 | 0.060 | $0.906 / 0.906$ | 8099 | $m P$ | 57.80 | 57.78 | 150.02 | 90.00 | 89.98 | 90.00 | 500945 | a, b, c |
| $*$ | 2 | 0.0152 | 0.061 | $0.800 / 0.800$ | 8099 | $m P$ | 57.78 | 150.01 | 57.80 | 90.00 | 89.99 | 90.00 | 500925 | b, c, a |
| $*$ | 1 | 0.0000 | 0.060 | $-/-$ | 8099 | $a P$ | 57.80 | 57.78 | 150.03 | 90.01 | 89.99 | 89.99 | 501086 | a, b, c |

[^0]
dials.refine_bravais_settings

- After indexing, look for lattice symmetry
- All compatible Bravais lattices are tested
- Metric fit score, refined RMSD and symmetry element CCs are reported
- The user chooses which solution to take further
\$ dials.refine_bravais_settings experiments.json indexed.pickle

[^1]Refinement

dials.refine

Parameterise the reflection prediction equation, minimise the squared differences between predictions ($X_{c^{\prime}}, Y_{c^{c}} \phi_{c}$) and observations ($X_{\sigma^{\prime}} Y_{o^{\prime}} \phi_{o}$)

Model	State	Parameters
Beam	s_{0}	2 orientation angles $\left(\mu_{1}, \mu_{2}\right)$ 1 length of $\mathrm{s}_{0}(\nu$, wavenumber $)$
Crystal orientation	U	3 orientation angles $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$
Crystal unit cell	B	6 elements of the metrical matrix G^{*}
Detector	d	3 translations $\left(\right.$ Dist, $\left.^{*}, \mathrm{t}_{2}\right)$ 3 rotation angles $\left(\tau_{1}, \tau_{2}, \tau_{3}\right)$

18 parameters in the $P 1$ case. Usually ν and μ_{1} are fixed

dials.refine

We approach this as a traditional non-linear least squares problem Keep simple and robust by using the positional residual only (no post-refinement) Do refinement globally, using strong spot data from the whole scan

How do we model a crystal that changes during the data collection? The crystal orientation and the unit cell may change due to

- sampling of different mosaic blocks during data collection
- crystal "slippage" (unlikely for cryo-cooled samples)
- radiation damage

dials.refine: example

720° of tetragonal thaumatin data collected at $0.1^{\circ} /$ image, $40 \mathrm{~Hz}, 3 \%$ transmission at DLS I03

Scan-varying refinement

Global, scan-varying refinement with a Gaussian smoother inspired by AIMLESS
117 parameters in total: 6 detector, 1 beam, 22 "samples" of 3 crystal orientation and 2 unit cell parameters

Multiple experiments

- Global refinement across datasets that share some models
- Typical use cases involve multiple crystals

(D)

Multiple experiments

- Global refinement across datasets that share some models
- Typical use cases involve multiple crystals

Multiple experiments

Cubic polyhedrin crystals, 1° scans

One lattice

5 sweeps (16 lattices)

Joint refinement

Multiple experiments

Use joint refinement as a preparatory step for BLEND

Integration

Tasks in dials.integrate

Calculate the bounding box parameters from strong reflections

Predict the positions of reflections on the images

Build reference profiles across all images

Integrate the reflections and save output

Computing reflection shoeboxes

Profile coordinate system

Use the kabsch model of a normal distribution on the surface of the Ewald sphere

- Corrects for geometrical distortions
- Makes spots appear to have taken shortest path through Ewald sphere
- Model assumes a Gaussian profile in Kabsch coordinate system

$$
\exp \left(\frac{-\epsilon_{1}^{2}}{2 \sigma_{D}^{2}}\right) \exp \left(\frac{-\epsilon_{2}^{2}}{2 \sigma_{D}^{2}}\right) \exp \left(\frac{-\epsilon_{3}^{2}}{2 \sigma_{M}^{2}}\right)
$$

2 parameters:
σ_{D} - roughly "beam divergence"
σ_{M} - roughly "mosaicity"

Computing reflection shoeboxes

σ_{D} is calculated from the spread of angles between the predicted diffracted beam vector and the vector for each strong pixel in the spot
σ_{M} is calculated by maximum likelihood method assuming a normal distribution of phi residuals for each strong pixel in the spot

Integration

2	3	2	2	0	Summation integration: estimate the reflection intensity by summing the counts contributing to the reflection and subtracting the background $\text { I = SUM (Counts - Background })$ Profile fitting: fit a known profile shape to the reflection to estimate the intensity Need to estimate background under reflection peak	
-	4	5	3	1		
3	10	38	4	1		
0	7	12	5	0		
-	3	4	5	2		

Background determination

Background outlier pixels

Background modelling with outlier pixels

DIALS has multiple options for outlier pixel handling

- Truncated - removed percentage of high and low valued pixels
- Normal - remove pixels above and below 3 STD around the mean
- Tukey - remove pixels based on interquartile range
- Plane - compute a plane and remove pixels based on deviation from plane (based on published mosflm algorithm)
- Normal - iteratively remove high valued pixels until they are approximately normally distributed (based on published XDS algorithm)

However, these methods assume a normal distribution and result in biases intensity estimates (particularly for low background)

Default algorithm in DIALS used a GLM algorithm

- assumes a Poisson distribution of pixel counts.
- Provides an unbiased estimate of the reflection background

Bias in background determination

These methods all introduce bias. Background is underestimated. Integrated intensities are overestimated.

Bias in background determination

Using a Poisson GLM instead of a least-squares fit removes the bias and still allows outlier rejection

3D profile fitting pixel gridding

Pixels are mapped to the Ewald sphere.

Counts are redistributed to Ewald sphere grid by computing fractional overlap of each pixel and Ewald sphere grid point

3D profile fitting phi gridding

Frames are transformed to make reflection appear as if it took the shortest path through the Ewald sphere

Counts on each image are distributed by finding the angular overlap between each grid point and each image and integrating over the intersection

Building reference profiles

Position: $(1231,1263)$

- Building reference profiles - detector space
- DIALS constructs a number of reference profiles using a rectangular grid on the detector

Building reference profiles

Each strong spot contributes to building the profile at adjacent grid points

Fitting reference profiles

Each reflection is fitted against its closest reference profile

Fitting reference profiles

Profile for reflection at position x derived from average of strong reflections in block with centre nearest x
dials.report

Experiments

Crystal:	Space group:	P 4 (No. 75)			Unit cell:	(57.785	57.785	150.006	90.000	90.000	90.000)
	U matrix:	$\left(\begin{array}{l}0.345 \\ 0.891 \\ 0.293\end{array}\right.$	-0.2590 0.3911 -0.8831	$\left.\begin{array}{r}-0.9020 \\ 0.2292 \\ 0.3660\end{array}\right)$	B matrix:	$\left(\begin{array}{r}0.0173 \\ -0.0000 \\ -0.0000\end{array}\right.$	0.0000 0.0173 0.0000	$\left.\begin{array}{l}0.0000 \\ 0.0000 \\ 0.0067\end{array}\right)$			
	$A=U B:$	$\left(\begin{array}{l}0.006 \\ 0.015 \\ 0.005\end{array}\right.$	-0.0045 0.0068 -0.0153	$\left.\begin{array}{r}-0.0060 \\ 0.0015 \\ 0.0024\end{array}\right)$							

Experimental geometry

Analysis of scan-varying crystal model

Scan-varying cell parameters

Analysis of strong reflections

Spot count per image

Analysis of reflection centroids

Difference between observed and calculated centroids

Difference in position

Difference between observed and calculated centroids in X

Log I/Sigma histogram

Distribution of I(prf)/Sigma vs X / Y

Distribution of I (sum)/Sigma vs X / Y

Distribution of I/Sigma vs Z

Diffraction Integration for Advanced Light Sources

DIALS

Diffraction Integration for Advanced Light Sources
Navigation
About
Installation
Getting started
Documentation
Publications
Links
License

Processing in Detail

Introduction

DIALS processing may be performed by either running the individual tools (spot finding, indexing, refinement, integration, exporting to MTZ) or you can run xia2 -dials, which makes informed choices for you at each stage. In this tutorial we will run through each of the steps in turn, checking the output as we go. We will also enforce the correct lattice symmetry.

Tutorial data
The following example uses a Thaumatin dataset collected using beamline 104 at Diamond Light Source which is available for dounload from DOI 10.5281/zenodo. 10271

Import

The first stage of step bystep DIALS processing is to import the data - all that happens here is that the image headers are read, and a file describing their contents (datablock.json) is written. It's worth noting that if this file is changed subsequent processing can use this.
dials.import data/th_8_2_0*cbf
The output just describes what the software understands of the images it was passed, in this case one sweep of data containing 540 images.
The following parameters have been modified:
input \{
datablock = <image files>
\}

DataBlock e
format: <class 'dxtbx.format.FormatCBFMiniPilatusDLS6MSN100.FormatCBFMiniPilatusDLS6MSN100'> num images: 540
num sweeps: 1
num stills: 0
Writing datablocks to datablock.json

Find Spots

Navigation

Getting started
Using xia2
Installation
Introductory example
Insulin tutorial
Program output
Parameters
Comments
History
Acknowledgements
Release notes
License

Quick start guide

If you don't like reading manuals and just want to get started, try:

```
xia2 -2d /here/are/my/images
```

or:

```
    xia2 -3d /here/are/my/images
```

or:

```
xia2 -dials /here/are/my/images
```

(remembering of course -atom X if you want anomalous pairs separating in scaling.) If this appears to do something sensible then you may well be home and dry. Some critical options:

Option	Usage
-atom X	tell xia2 to separate anomalous pairs i.e. $\mathrm{I}(+) \neq \mathrm{I}(-)$ in scaling
-2 d	tell xia2 to use MOSFLM and Aimless
-3 d	tell xia2 to use XDS and XSCALE
-3 dii	tell xia2 to use XDS and XSCALE, indexing with peaks found from all images
- dials	tell xia2 to use DIALS and Aimless

If this doesn't hit the spot, you'll need to read the rest of the documentation.

Summary

- DIALS used routinely for automated data processing via xia2
- XIA2 is the "friendly" DIALS user interface for synchrotron data, and is bundled with DIALS
- Software available from http://dials.github.io/ under BSD license
- Binary releases available for Mac and Linux
- DIALS 1.6 is included in CCP4 7.0 (including Windows)
- GUI is currently in development

Acknowledgements

DIALS East

Gwyndaf Evans, Graeme Winter, David Waterman, James Parkhurst, Richard Gildea, Luis Fuentes-Montero, Markus Gerstel, Melanie Vollmar

DIALS West

Nick Sauter, Aaron Brewster, Tara Michels-Clark, Iris Young
Lots of other people
Garib Murshudov, Andrew Leslie, Phil Evans, Harry Powell, Takanori Nakane

Thanks for listening!

https://dials.diamana.ac.பk

[^0]: * $=$ recommended solution

[^1]: * = recommended solution

