Data processing with DIALS

James Parkhurst Institut Pasteur de Montevideo/CCP4 workshop, Uruguay, November 2017

What are we doing and why are we doing it?

Compute the intensity of each Bragg spot in a set of diffraction images

K = constant for given crystalL = Lorentz factorp = polarization factor

$$\rho(x, y, z) = \frac{1}{V} \sum_{h} \sum_{k} \sum_{l} F_{hkl} e^{-2\pi i(hx + ky + lz)}$$

Electron density at every point in the cell depends on the intensity of every reflection. We need to measure our intensities as well as possible!

Warning: garbage in, garbage out

Data collection is the last experimental stage; if you collect bad data you are stuck with it! Data processing programs won't be able to rescue you!

DIALS overview

Acknowledgements

XDS

research papers

Acta	Crystallographica Section D
Bio	logical
Cry	stallography
ISSN	0907-4449

Wolfgang Kabsch

Max-Planck-Institut für Medizinische Forschung, Abteilung Biophysik, Jahnstrasse 29, 69120 Heidelberg, Germany

Correspondence e-mail: wolfgang.kabsch@mpimf-heidelberg.mpg.de

The usage and control Acta Crystallographica Section D package XDS for Biological described in the con Crystallography include automatic de ISSN 0907-4449 range and recognition Moreover, the limita number of correction pixel contents have t I. W. Pflugrath been restructured fo and completeness of measurement. Molecular Structure Corporation, 9009 New Trails Drive, The Woodlands, TX 77381, USA 1. Functional speci Correspondence e-mail: jwp@msc.com The program package developed for the re recorded on a plana monochromatic X-ra XDS accepts a rotation images from and multiwire area metrics and produces of the reflections occu way. The program as positive amount of c incident beam and cr imposes no limitati directions of the rot oscillation range cov

The finer things in

depending on whether the rotatic

is greater than or less than the c

The expectations and consequen and thin images in terms of spa

X-ray background and $I/\sigma(I)$ a

software suite for processing (

introduced, and results from d

those from another popular pacl

Two-dimensional position-sensiti

for many years in X-ray diffract

cular, data from crystals of maci

oligonucleotides and their cor

acquired with an area detector

obsolete), a multi-wire system

recently commercialized char

coupled to a phosphor-coated fit

detectors, the crystal, centered in

oscillated around a single axis th

~2.0°, while counts from diffrac

for a specified time. At the en

detector is read out and the cou

two-dimensional array with each

to a distinct position on the c

1. Introduction

research papers

Acta Crystallographica Section D Biological X-ray diffraction images from Crystallography sensitive detectors can be cha ISS 0007-449

Andrew G. W. Leslie

MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England

Correspondence e-mail: andrew@mrc-Imb.cam.ac.uk reliable, but should i intervention. The pro three stages. The first parameters and the o parameters and vince The second step is to r parameters and also t known as post-refiner

parameters and also t known as post-refiner images, which consists reflections on each in intensity of each reflec out while simultaneou parameters. Basic fea each of these three ss

with reference to the

The integration

The objective of any

produce from a set of

with their associated

uncertainties), togeth

crystal unit-cell param

1. Introduction

The collection of mac gone dramatic advan advent of two-dimensi and CCDs, crystal cry monochromatic and Centre National de la Recherche Scientifique Université Paris-Sud

Laboratoire pour l'Utilisation du Rayonnement Electromagnétique

Proceedings

of the EEC Cooperative Workshop

on Position-Sensitive Detector Software

(Phases I & II)

held at L.U.R.E. from May 26 to June 7, 1986.

research papers

Fig. 10.1. Simplified flow-diagram of the Cambridge system, showing the inter-relation of the component programs, IDXREF, GENERT, MOSCO and CELL.

Philosophy: toolbox

100

Or to substanting the star

10000

BLACKS

DEDI HASAN SAMA (O)

-

Philosophy: levels of interaction

xia2 -dials \${data_directory}

For AUTOMATIC/DEFAULT/NATIVE			
High resolution limit	1.36	6.08	1.36
Low resolution limit	53.92	53.92	1.40
Completeness	99.8	99.9	97.8
Multiplicity	5.3	4.9	3.1
I/sigma	11.7	26.8	2.2
Rmerge	0.061	0.026	0.370
Rmeas(I)	0.075	0.032	0.521
Rmeas(I+/-)	0.075	0.032	0.495
Rpim(I)	0.032	0.014	0.279
Rpim(I+/-)	0.042	0.018	0.326
CC half	0.999	0.998	0.818
Wilson B factor	8.913		
Anomalous completeness	97.5	100.0	77.3
Anomalous multiplicity	2.6	3.1	1.8
Anomalous correlation	0.005	0.204	-0.019
Anomalous slope	0.955	0.000	0.000
Total observations	292123	3747	12262
Total unique	55480	768	3919
Assuming spacegroup: P 41 21 2			
Other likely alternatives are:			
P 43 21 2			
Unit cell:			
57.781 57.781 149.995			
90.000 90.000 90.000			

DIALS/XIA2 in CCP4 I2

Future: DIALS GUI (currently in development)

Main DIALS programs

dials.import
dials.find_spots
dials.index
dials.refine_bravais_settings
dials.refine
dials.integrate
dials.export_mtz

More than 50 other dials.* commands

Then onwards into the CCP4 data processing pipeline: POINTLESS \rightarrow AIMLESS \rightarrow CTRUNCATE...

DIALS on the command line

- \$ dials.import \${data_directory}/th_8_2_0*.cbf
- \$ dials.find_spots datablock.json nproc=8
- \$ dials.index datablock.json strong.pickle
- \$ dials.refine_bravais_settings experiments.json indexed.pickle
- \$ dials.reindex indexed.pickle change_of_basis_op=a,b,c
- \$ dials.refine bravais_setting_9.json reindexed_reflections.pickle outlier.algorithm=tukey use_all_reflections=true scan_varying=true output.experiments=refined_experiments.json
- \$ dials.integrate refined_experiments.json refined.pickle outlier.algorithm=null nproc=4
- \$ dials.export_mtz integrated.pickle refined_experiments.json hklout=integrated.mtz
- \$ pointless hklin integrated.mtz hklout sorted.mtz > pointless.log
- \$ aimless hklin sorted.mtz hklout scaled.mtz > aimless.log << eof
 resolution 1.3
 anomalous off
 eof</pre>
- \$ ctruncate -hklin scaled.mtz -hklout truncated.mtz -colin '/*/*/[IMEAN,SIGIMEAN]' > ctruncate.log

Who needs a GUI?

Spot finding

dials.find_spots

- Sequence of per-image filters to find strong pixels
- 3D analysis of strong pixels to identify strong spots
- Filter spots by
 - number of pixels
 - peak-centroid distance
 - resolution
 - ice rings
 - untrusted regions


```
...
Histogram of per-image spot count for imageset 0:
71268 spots found on 200 images (max 1897 / bin)
*
```

**** *		*	*
*******	** *****	**** *	* *
*********	** ***********	******	****
*********	***** * *******************************	******	****
*********	***************************************	******	****
*********	***************************************	******	****
*********	***************************************	******	****
*********	***************************************	******	****
1	image		200

```
Saved 71268 reflections to strong.pickle Time Taken: 88.113627
```

raw data

.

.-

variance

H

dispersion = variance / mean

dispersion > 1 + sigma_s * sqrt(2/(m-1))

raw data > mean + sigma_b * sqrt(variance)

Default spot finding parameters are often not suitable for CCD images

Image is from Rigaku Saturn 92 detector

Default spot finding parameters are often not suitable for CCD images

dials.index

Map centroids to reciprocal space, analyse for periodicity and determine basis vectors for the reduced cell

- Choice of method:
 - 1D FFT (DPS)
 - 3D FFT default
 - new real space grid search algorithm
- Optionally provide known unit cell and space group

\$ dials.index d Found max_cell: Setting d_min:	atablock.json strong.pickle 199.1 Angstrom 3.89
RMSDs by experi	ment:
Exp Nref	RMSD_X RMSD_Y RMSD_Z (px) (px) (images)
0 4049	0.2881 0.25838 0.17767
Final refined c model 1 (114690 Crystal: Unit cell: 89.990)	rystal models: reflections): (57.804, 57.782, 150.027, 90.009, 89.991
Space group U matrix:	: P 1 {{ 0.3455, -0.2589, -0.9020}, { 0.8914, 0.3909, 0.2292}, { 0.2933 0.355911
B matrix:	{{ 0.0173, 0.0000, 0.0000}, {-0.0000, 0.0173, 0.0000}, {-0.0000, 0.0173, 0.0000},
A = UB:	{{ 0.0060, -0.0045, -0.0060}, { 0.0154, 0.0068, 0.0015}, { 0.0051, -0.0153, 0.0024}}

Saving refined experiments to experiments.json Saving refined reflections to indexed.pickle

dials.index

DIALS contains an indexing algorithm that is very successful at identifying multiple lattices

This even works when lattices diffract equally well, and only a narrow wedge of data is available

As additional lattices are found, joint refinement reduces correlations between crystal and detector parameters

R. Gildea et al. (2014) Acta Cryst. D70, 2652-66

1° wedge of data 1858 spots

x-coordinate (mm)

200 250 x-coordinate (mm) 250

x-coordinate (mm)

dials.reciprocal_lattice_viewer

Visualise the strong spots from spotfinding in reciprocal space.

Examples:

dials.reciprocal_lattice_viewer datablock.json strong.pickle

dials.reciprocal_lattice_viewer experiments.json indexed.pickle

الم الذي العال العالي العالي العالية المعاني العالي العالي العالي العالي العالي العالي العالي العالي

dials.refine_bravais_settings

- After indexing, look for lattice symmetry All compatible Bravais lattices are tested Metric fit score, refined RMSD and symmetry element CCs are reported The user chooses which solution to take further

\$ dials.refine bravais settings experiments.json indexed.pickle

Solution Metric fit rmsd min/max cc #spots lattice unit cell volume cb op 0.0311 0.063 0.800/0.857 8099 tP 57.78 57.78 150.00 90.00 a,b,c 9 90.00 90.00 500867 0.0311 0.063 0.800/0.969 8099 00 81.72 81.73 150.01 90.00 90.00 90.00 1002008 a-b,a+b,c 0.0272 0.061 0.969/0.969 8099 mC 81.73 81.74 150.03 90.00 89.99 90.00 1002365 a-b,a+b,c 0.0311 0.062 0.805/0.805 8099 81.73 81.72 150.02 90.00 89.99 90.00 1002012 a+b,-a+b,c mC 0.0154 0.061 0.800/0.906 8099 57.79 57.76 149.99 90.00 90.00 90.00 500672 οP a,b,c 0.0147 0.060 0.821/0.821 8099 57.77 57.80 150.01 90.00 90.02 90.00 500853 -b,-a,-c mΡ 0.0154 0.060 0.906/0.906 8099 mP 57.80 57.78 150.02 90.00 89.98 90.00 500945 a,b,c 0.0152 0.061 0.800/0.800 8099 <u>mP 57.78 150.01</u> 57.80 90.00 89.99 90.00 500925 b,c,a 0.0000 0.060 -/-8099 aP 57.80 57.78 150.03 90.01 89.99 89.99 501086 a,b,c

* = recommended solution

dials.refine_bravais_settings

- \bullet
- After indexing, look for lattice symmetry All compatible Bravais lattices are tested Metric fit score, refined RMSD and symmetry element CCs are reported The user chooses which solution to take further \bullet

\$ dials.refine bravais settings experiments.json indexed.pickle

Solutio	on Meti	ric fit	rmsd	min/max	cc #spots	lattice					uni	t_cell	volume	cb_op
	5	3.7053	1.048	0.199/0.4	38 1792	oP	11.52	13.51	29.38	90.00	90.00	90.00	4571	a,b,c
	4	3.7053	1.001	0.438/0.4	38 1755	mP	13.43	11.55	29.30	90.00	91.40	90.00	4543	-b,-a,-c
	3	3.7038	1.033	0.287/0.2	87 1811	mP	11.47	29.43	13.46	90.00	88.93	90.00	4542	-a,-c,-b
*	2	0.1091	0.065	0.199/0.1	99 1929	mP	11.63	13.55	30.14	90.00	93.69	90.00	4739	a,b,c
	1	0.0000	0.060		/- 1890	aP	11.63	13.55	30.15	89.94	93.70	90.06	4742	a,b,c

* = recommended solution

Refinement

dials.refine

Parameterise the reflection prediction equation, minimise the squared differences between predictions (X_c, Y_c, ϕ_c) and observations (X_o, Y_o, ϕ_o)

Model	State	Parameters
Beam	s _o	2 orientation angles (μ_1 , μ_2) 1 length of s₀ (<i>v</i> , wavenumber)
Crystal orientation	U	3 orientation angles ($\phi_1^{}, \phi_2^{}, \phi_3^{}$)
Crystal unit cell	В	6 elements of the metrical matrix G *
Detector	d	3 translations (Dist, t_1, t_2) 3 rotation angles (τ_1, τ_2, τ_3)

18 parameters in the *P*1 case. Usually *v* and μ_1 are fixed

dials.refine

We approach this as a traditional non-linear least squares problem Keep simple and robust by using the positional residual only (no post-refinement) Do refinement globally, using strong spot data from the whole scan

How do we model a crystal that changes during the data collection? The crystal orientation and the unit cell may change due to

- sampling of different mosaic blocks during data collection
- crystal "slippage" (unlikely for cryo-cooled samples)
- radiation damage

dials.refine: example

720° of tetragonal thaumatin data collected at 0.1°/image, 40Hz, 3% transmission at DLS I03

Scan-varying refinement

Global, scan-varying refinement with a Gaussian smoother inspired by AIMLESS

117 parameters in total: 6 detector, 1 beam, 22 "samples" of 3 crystal orientation and 2 unit cell parameters

Global refinement across datasets that share some modelsTypical use cases involve multiple crystals

Global refinement across datasets that share some modelsTypical use cases involve multiple crystals

Cubic polyhedrin crystals, 1° scans One lattice

5 sweeps (16 lattices)

Joint refinement

Use joint refinement as a preparatory step for BLEND

TehA data. See Acta Cryst. D71 (June 2015) for original analysis

Integration

Tasks in dials.integrate

Calculate the bounding box parameters from strong reflections Predict the positions of reflections on the images Build reference profiles across all images Integrate the reflections and save output

Computing reflection shoeboxes

Profile coordinate system

Use the kabsch model of a normal distribution on the surface of the Ewald sphere

- Corrects for geometrical distortions
- Makes spots appear to have taken shortest path through Ewald sphere
- Model assumes a Gaussian profile in Kabsch coordinate system

$$\exp\!\left(\frac{-\epsilon_1^2}{2\sigma_D^2}\right)\!\exp\!\left(\frac{-\epsilon_2^2}{2\sigma_D^2}\right)\!\exp\!\left(\frac{-\epsilon_3^2}{2\sigma_M^2}\right)$$

2 parameters:

 σ_D - roughly "beam divergence" σ_M - roughly "mosaicity"

Computing reflection shoeboxes

 $\sigma_{\rm D}$ is calculated from the spread of angles between the predicted diffracted beam vector and the vector for each strong pixel in the spot

 $\sigma_{_M}$ is calculated by maximum likelihood method assuming a normal distribution of phi residuals for each strong pixel in the spot

Integration

2	3	2	2	٥
٥	4	5	3	1
3	10	38	4	1
٥	7	12	5	٥
٥	3	4	5	2

Summation integration: estimate the reflection intensity by summing the counts contributing to the reflection and subtracting the background

I = SUM(Counts - Background)

Profile fitting: fit a known profile shape to the reflection to estimate the intensity

Need to estimate background under reflection peak

Background determination

2	3	2	2	٥
٥	4	5	3	1
3	10	38	4	1
٥	7	12	5	٥
0	3	4	5	2

Don't know background in signal region so estimate from the surrounding pixels

Background = MEAN(Background Counts) Background = (2+3+2+2+0+0+1+3+1+0+0+0+3+4+5+2) / 16 Background = 2.5

I = SUM(Counts - Background) I = 4+5+3+10+38+4+7+12+5 - 9*2.5 I = 88 - 22.5 I = 65.5

Background outlier pixels

distribution

Background modelling with outlier pixels

DIALS has multiple options for outlier pixel handling

- Truncated removed percentage of high and low valued pixels
- Normal remove pixels above and below 3 STD around the mean
- Tukey remove pixels based on interquartile range
- Plane compute a plane and remove pixels based on deviation from plane (based on published mosflm algorithm)
- Normal iteratively remove high valued pixels until they are approximately normally distributed (based on published XDS algorithm)

However, these methods assume a normal distribution and result in biases intensity estimates (particularly for low background)

Default algorithm in DIALS used a GLM algorithm

- assumes a Poisson distribution of pixel counts.
- Provides an unbiased estimate of the reflection background

Bias in background determination

These methods all introduce bias. Background is *underestimated*. Integrated intensities are *overestimated*.

Bias in background determination

Using a Poisson GLM instead of a least-squares fit removes the bias and still allows outlier rejection

3D profile fitting pixel gridding

Pixels are mapped to the Ewald sphere.

Counts are redistributed to Ewald sphere grid by computing fractional overlap of each pixel and Ewald sphere grid point

3D profile fitting phi gridding

Frames are transformed to make reflection appear as if it took the shortest path through the Ewald sphere

Counts on each image are distributed by finding the angular overlap between each grid point and each image and integrating over the intersection

Building reference profiles

- Building reference profiles detector space
- **DIALS** constructs a number of reference profiles using a rectangular grid on the detector

Building reference profiles

Each strong spot contributes to building the profile at adjacent grid points

Fitting reference profiles

Each reflection is fitted against its closest reference profile

Fitting reference profiles

Profile for reflection at position x derived from average of strong reflections in block with centre nearest x

dials.report

Analysis of strong reflections Spot count per image Number of unindexed reflections binned in X/Y 250 - #spots #spots - #indexed 500-200

15

Analysis of reflection centroids

Difference between observed and calculated centroids

Difference between observed and calculated centroids in X

Analysis of reflection intensities

Log I/Sigma histogram

Distribution of I(prf)/Sigma vs X/Y

Log I/Sigma

Distribution of I(sum)/Sigma vs X/Y

Distribution of I/Sigma vs Z

http://dials.diamond.ac.uk/doc/documentation/tutoria

DOI 10.5281/zenodo.10271

DIALS

Diffraction Integration for Advanced Light Sources

Navigation

About Installation Getting started Documentation Publications Links License

Processing in Detail

Introduction

DIALS processing may be performed by either running the individual tools (spot finding, indexing, refinement, integration, exporting to MTZ) or you can run xia2 -dials, which makes informed choices for you at each stage. In this tutorial we will run through each of the steps in turn, checking the output as we go. We will also enforce the correct lattice symmetry.

Tutorial data

The following example uses a Thaumatin dataset collected using beamline IO4 at Diamond Light Source which is available for download from

Import

The first stage of step by step DIALS processing is to import the data - all that happens here is that the image headers are read, and a file describing their contents (<u>datablock.json</u>) is written. It's worth noting that if this file is changed subsequent processing can use this.

dials.import data/th_8_2_0*cbf

The output just describes what the software understands of the images it was passed, in this case one sweep of data containing 540 images.

```
The following parameters have been modified:

input {

datablock = <image files>

}

DataBlock 0

format: <class 'dxtbx.format.FormatCBFMiniPilatusDLS6MSN100.FormatCBFMiniPilatusDLS6MSN100'>

num images: 540

num sweeps: 1

num stills: 0

Writing datablocks to datablock.json
```

Find Spots

Navigation

Getting started

Using xia2

Installation

Introductory example

Insulin tutorial

Program output

Parameters

Comments

History

Acknowledgements

Release notes

License

Quick start guide

If you don't like reading manuals and just want to get started, try:

xia2 -2d /here/are/my/images

xia2 -3d /here/are/my/images

or:

or:

xia2 -dials /here/are/my/images

(remembering of course -atom X if you want anomalous pairs separating in scaling.) If this appears to do something sensible then you may well be home and dry. Some critical options:

Option	Usage
-atom X	tell xia2 to separate anomalous pairs i.e. $I(+) \neq I(-)$ in scaling
-2d	tell xia2 to use MOSFLM and Aimless
-3d	tell xia2 to use XDS and XSCALE
-3dii	tell xia2 to use XDS and XSCALE, indexing with peaks found from all images
-dials	tell xia2 to use DIALS and Aimless

If this doesn't hit the spot, you'll need to read the rest of the documentation.

Summary

- DIALS used routinely for automated data processing via xia2
- XIA2 is the "friendly" DIALS user interface for synchrotron data, and is bundled with DIALS
- Software available from http://dials.github.io/ under BSD license
- Binary releases available for Mac and Linux
- DIALS 1.6 is included in CCP4 7.0 (including Windows)
- GUI is currently in development

Acknowledgements

DIALS East

Gwyndaf Evans, Graeme Winter, David Waterman, James Parkhurst, Richard Gildea, Luis Fuentes-Montero, Markus Gerstel, Melanie Vollmar

DIALS West

Nick Sauter, Aaron Brewster, Tara Michels-Clark, Iris Young

Lots of other people

Garib Murshudov, Andrew Leslie, Phil Evans, Harry Powell, Takanori Nakane

Diffraction Integration for Advanced Light Sources

MRC Laboratory of Molecular Biology

wellcome

Thanks for listening!

 $\bullet \bullet \bullet$

https://dials.diamond.ac.uk

 $\bullet \bullet \bullet$